119 research outputs found

    Weather data around the world for design of field hospital HVAC

    Get PDF
    Field hospital (FH) is a military mobile complex to be deployed in almost any climate around the world. Heating, ventilation and air-conditioning (HVAC) system for the Czech Republic FH units is being redesigned. Computer simulation software will be used for the design of HVAC under variety of specific outdoor conditions. Simulation software requires weather data to calculate energy balance of buildings and HVAC systems. Currently there are several weather data sets available for this purpose. All contain weather data but they may differ significantly. Therefore they should be carefully selected prior to their use. Even though a lot of databases are available, there is poor access to proper data outside of U.S., Western Europe and Japan, and in non-typical regions in terms of simulation exercises (i.e. developing countries). This paper reviews accessible weather data files and suggests which weather data should be used for design and long-term performance analysis of FH HVAC system in various non-typical geographical locations around the world

    Computing Quantiles in Markov Reward Models

    Get PDF
    Probabilistic model checking mainly concentrates on techniques for reasoning about the probabilities of certain path properties or expected values of certain random variables. For the quantitative system analysis, however, there is also another type of interesting performance measure, namely quantiles. A typical quantile query takes as input a lower probability bound p and a reachability property. The task is then to compute the minimal reward bound r such that with probability at least p the target set will be reached before the accumulated reward exceeds r. Quantiles are well-known from mathematical statistics, but to the best of our knowledge they have not been addressed by the model checking community so far. In this paper, we study the complexity of quantile queries for until properties in discrete-time finite-state Markov decision processes with non-negative rewards on states. We show that qualitative quantile queries can be evaluated in polynomial time and present an exponential algorithm for the evaluation of quantitative quantile queries. For the special case of Markov chains, we show that quantitative quantile queries can be evaluated in time polynomial in the size of the chain and the maximum reward.Comment: 17 pages, 1 figure; typo in example correcte

    Variations on the Stochastic Shortest Path Problem

    Full text link
    In this invited contribution, we revisit the stochastic shortest path problem, and show how recent results allow one to improve over the classical solutions: we present algorithms to synthesize strategies with multiple guarantees on the distribution of the length of paths reaching a given target, rather than simply minimizing its expected value. The concepts and algorithms that we propose here are applications of more general results that have been obtained recently for Markov decision processes and that are described in a series of recent papers.Comment: Invited paper for VMCAI 201

    Explicit Model Checking of Very Large MDP using Partitioning and Secondary Storage

    Full text link
    The applicability of model checking is hindered by the state space explosion problem in combination with limited amounts of main memory. To extend its reach, the large available capacities of secondary storage such as hard disks can be exploited. Due to the specific performance characteristics of secondary storage technologies, specialised algorithms are required. In this paper, we present a technique to use secondary storage for probabilistic model checking of Markov decision processes. It combines state space exploration based on partitioning with a block-iterative variant of value iteration over the same partitions for the analysis of probabilistic reachability and expected-reward properties. A sparse matrix-like representation is used to store partitions on secondary storage in a compact format. All file accesses are sequential, and compression can be used without affecting runtime. The technique has been implemented within the Modest Toolset. We evaluate its performance on several benchmark models of up to 3.5 billion states. In the analysis of time-bounded properties on real-time models, our method neutralises the state space explosion induced by the time bound in its entirety.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-24953-7_1

    A Proof System for Compositional Verification of Probabilistic Concurrent Processes

    Get PDF
    Abstract. We present a formal proof system for compositional verification of probabilistic concurrent processes. Processes are specified using an SOS-style process algebra with probabilistic operators. Properties are expressed using a probabilistic modal ”-calculus. And the proof system is formulated as a sequent calculus in which sequents are given a quantitative interpretation. A key feature is that the probabilistic scenario is handled by introducing the notion of Markov proof, according to which proof trees contain probabilistic branches and are required to satisfy a condition formulated byinterpretingthemas Markov Decision Processes. We present simple but illustrative examples demonstrating the applicability of the approach to the compositional verification of infinite state processes. Our main result is the soundness of the proof system, which is proved by applying the coupling method from probability theory to the game semantics of the probabilistic modal ”-calculus.

    Verification and Control of Turn-Based Probabilistic Real-Time Games

    Get PDF
    Quantitative verification techniques have been developed for the formal analysis of a variety of probabilistic models, such as Markov chains, Markov decision process and their variants. They can be used to produce guarantees on quantitative aspects of system behaviour, for example safety, reliability and performance, or to help synthesise controllers that ensure such guarantees are met. We propose the model of turn-based probabilistic timed multi-player games, which incorporates probabilistic choice, real-time clocks and nondeterministic behaviour across multiple players. Building on the digital clocks approach for the simpler model of probabilistic timed automata, we show how to compute the key measures that underlie quantitative verification, namely the probability and expected cumulative price to reach a target. We illustrate this on case studies from computer security and task scheduling

    Characterization of GATA/GACA-related sequences on proximal chromosome 17 of the mouse

    Full text link
    Autosomal loci have long been thouht to have a role in sex determination of mice. We studied the localization of GATA/GACA repeats on chromosome 17 in regard to the possibility of their involvement in sex determination. We performed in situ hybridizations on chromosome 17s carrying the Hairpain tail ( T hp ) deletion of the T locus since this deletion has been associated with sex reversal and hermaphroditism. We did not detect a significant decrease in the amount of hybridization of GATA/GACA repeats to the T hp deletion. In addition, three Bkm-positive cosmids from proximal chromosome 17 did not contain sequences deleted in T hp or T orl and a fetal testes cDNA probe did not hybridize to the cosmid sequences. Although we confirmed the localization of Bkm-related sequences on chromosome 17, we were not able to relate GATA/GACA sequences on chromosome 17 to sex determination in mice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47363/1/412_2004_Article_BF00371970.pd

    LNCS

    Get PDF
    We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both randomness as well as angelic and demonic non-determinism. Lexicographic order allows to consider multiple objectives with a strict preference order over the satisfaction of the objectives. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. We establish determinacy of such games and present strategy and computational complexity results. For strategy complexity, we show that lexicographically optimal strategies exist that are deterministic and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP∩coNP , matching the current known bound for single objectives; and in general the decision problem is PSPACE -hard and can be solved in NEXPTIME∩coNEXPTIME . We present an algorithm that computes the lexicographically optimal strategies via a reduction to computation of optimal strategies in a sequence of single-objectives games. We have implemented our algorithm and report experimental results on various case studies

    High Diversity at PRDM9 in Chimpanzees and Bonobos

    Get PDF
    BACKGROUND: The PRDM9 locus in mammals has increasingly attracted research attention due to its role in mediating chromosomal recombination and possible involvement in hybrid sterility and hence speciation processes. The aim of this study was to characterize sequence variation at the PRDM9 locus in a sample of our closest living relatives, the chimpanzees and bonobos. METHODOLOGY/PRINCIPAL FINDINGS: PRDM9 contains a highly variable and repetitive zinc finger array. We amplified this domain using long-range PCR and determined the DNA sequences using conventional Sanger sequencing. From 17 chimpanzees representing three subspecies and five bonobos we obtained a total of 12 alleles differing at the nucleotide level. Based on a data set consisting of our data and recently published Pan PRDM9 sequences, we found that at the subspecies level, diversity levels did not differ among chimpanzee subspecies or between chimpanzee subspecies and bonobos. In contrast, the sample of chimpanzees harbors significantly more diversity at PRDM9 than samples of humans. Pan PRDM9 shows signs of rapid evolution including no alleles or ZnFs in common with humans as well as signals of positive selection in the residues responsible for DNA binding. CONCLUSIONS AND SIGNIFICANCE: The high number of alleles specific to the genus Pan, signs of positive selection in the DNA binding residues, and reported lack of conservation of recombination hotspots between chimpanzees and humans suggest that PRDM9 could be active in hotspot recruitment in the genus Pan. Chimpanzees and bonobos are considered separate species and do not have overlapping ranges in the wild, making the presence of shared alleles at the amino acid level between the chimpanzee and bonobo species interesting in view of the hypothesis that PRDM9 plays a universal role in interspecific hybrid sterility
    • 

    corecore